Why Do I Have Knee Pain? Complete Guide to Patellofemoral Pain Syndrome: Part 4 - Capacity - FITNESS PAIN FREE

Why Do I Have Knee Pain? Complete Guide to Patellofemoral Pain Syndrome: Part 4 – Capacity

Patellofemoral pain syndrome (PFPS) is the most common form of knee pain treated in physical therapy clinics.  I made this series to help people better understand this condition, why it occurs and how to fix it.

In case you missed it:

Today we’ll be discussing how PFPS occurs and the factors that influence getting into pain (and eventually back out of it).  PFPS is largely described as an issue of overuse (4, 11).  If we get too much stress within the patellofemoral (PF) joint we can create some tissue irritation and as a result end up in pain.  They key point here is the issue of “too much” stress.  Again remember that the knee is designed to handle stress and that in general movement and exercise is good.

As described, certain activities place more stress on the PF joint then others.  Activities like running and deep squatting place larger forces on the PF joint.  Because of this PFPS is a common injury seen in runners and weightlifters.

Also remember how certain biomechanics of the hip, knee, foot and ankle all play a role in knee pain.  If biomechanics are off, we run into decreased surface area in the PF joint to dissipate force as well as more stress on the lateral (or outside) portion of the joint.  Make sure you check out part 2 again for a refresher on these concepts.  The third aspect that is important to understand is the “capacity” of the knee joint.

Scott Dye is a famous knee researcher who first discussed the topic of “tissue homeostasis” and capacity of the PF joint.  Wikipedia defines homeostasis as:

Homeostasis can be defined as the stable condition of an organism and of its internal environment; or as the maintenance or regulation of the stable condition, or its equilibrium; or simply as the balance of bodily functions.

Basically the PF joint is attempting to maintain it’s homeostasis like any other part of the body.  Scott believes that a single insult or a period of prolonged loading to the PF joint can alter the joint’s homeostasis and create knee pain (11).  It sounds like overuse of the knee joint fits the bill in this situation.

What’s interesting about the PF joint is that this initial insult can be prolonged indefinitely if not intervened upon (11).  In other words, pain tends to stick around forever unless we do something about it (keep in mind that rest tends not to fix the issue) (13).

Scott described the knee’s ability to handle stress (the capacity of the PF joint) as the joint’s “envelope of function” (11).  Basically, the knee joint can handle a certain amount of stress prior to it becoming injured and or painful.  If we exceed this capacity then we end up with knee pain.

Let’s look at 2 examples below.  One is a beginner lifter who just became interested in weight training and wants to start a beginner weightlifting program.  In the image below the area in grey represents what the lifter’s knee is capable of handling before an injury occurs.  The area in the white represents what the knee is not quite capable of and can cause injury:

As you can see this individual can perform stair climbing, squatting and running without any pain.  All of these activities are within their envelope of function.  However, they’re not quite ready to start a beginner lifting program.  That’s right above their envelope of capacity.  Put them into an elite training program and they’re gonna have some pretty angry knees.

What’s very interesting about the PF joint is that it seems we can increase the capacity of the knee joint with training over time.  The greater the capacity of the joint, the greater tolerance we have before experiencing pain.  This is potentially why you can have athletes who can perform a large volume of running or loaded deep squats throughout a training week and never experience any pain.  They’ve built their capacity for it over time.  If you give the same training load to a coach potato then you’ve probably just injured someone.

For the athlete depicted in the graph above they will require a period of training to increase their capacity prior to beginning a true program.  Let’s imagine that we take the same lifter and train them over the course of 10 years.  Now they’re an elite weightlifter.  Their envelope of function has improved.

Our weightlifter has been building the capacity of the knee joint over the course of years and they are now able to handle much more volume, intensity and frequency of loading to the PF joint then when they started.  Even though the stress on the PF joint is far higher in the elite lifter’s program their capacity has risen to match this stress.  Therefore they continue to train within their envelope of function and maintain the homeostasis of the joint.

Now, what happens when 2 elite athletes run the same race and only 1 gets hurt?  Well this can be simplified with the images below.  Look at running athlete “A” below:

They have enough capacity to handle races up to marathon distance without getting injured.  Let’s contrast this to athlete “B”

In this example our running athlete can handle most running distances below a marathon.  Theoretically, once they decide to try a marathon they would end up in pain.  This would be the patient who comes in with knee pain following a marathon that had no pain prior to the race (Let’s also theorize she did not train above 20 miles in her training prior to the marathon).  The race exceeded her capacity and resulted in knee pain.

So to recap:

  • Patellofemoral pain syndrome is a condition of overuse
  • An initial insult of overuse can disrupt the “homeostasis” of the PF joint and lead to indefinite length of pain unless intervened upon
  • PF joint capacity is the amount of stress the knee joint can handle before an injury results
  • PF joint capacity can be increased (or decreased) depending on the stress placed on the joint with training and regular activity
  • PF joint capacity helps explains why certain athletes get injured and other don’t

Now as you might have guessed, PF joint capacity is going to be influenced by a variety of factors.  In the next article we go over what these factors are and how they can help you to build bulletproof knees.

Click HERE for Part 5:

Knee Pain for Life,

Dan Pope DPT, OCS, CSCS, CF L1

Works Cited:

  1. Current Concepts and Treatment of Patellofemoral Compressive Issues IJSPT 2016 https://www.ncbi.nlm.nih.gov/pubmed/27904792
  2. Current Concepts in Biomechanical Interventions for Patellofemoral Pain IJSPT 2016 https://www.ncbi.nlm.nih.gov/pubmed/27904791
  3. Examination of the Patellofemoral Joint IJSPT 2016 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095938/
  4. Biomechanics and pathomechanics of the Patellofemoral Joint IJSPT 2016 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095937/
  5. Salsich GB, Perman WH. Patellofemoral joint contact area is influenced by tibiofemoral rotation alignment in individuals who have patellofemoral pain. J Orthop Sports Phys Ther. 2007;37(9):521-528.
  6. Tibiofemoral and Patellofemoral Mechanics are Altered at Small Knee Flexion Angles in People with Patellofemoral Pain https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425715/
  7. Kay M Crossley, Marienke van Middelkoop, Michael J Callaghan, Natalie J Collins, Michael Skovdal Rathleff, Christian J Barton, 2016 Patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester. Part 2: recommended physical interventions (exercise, taping, bracing, foot orthoses and combined interventions) BJSM http://bjsm.bmj.com/content/early/2016/05/31/bjsports-2016-096268
  8. Christian John Barton, Simon Lack, Steph Hemmings, Saad Tufail, Dylan Morrissey, The ‘Best Practice Guide to Conservative Management of Patellofemoral Pain’: incorporating level 1 evidence with expert clinical reasoning BJSM 2015http://bjsm.bmj.com/content/49/14/923#T
  9. Patellofemoral pain syndrome and its association with hip, ankle, and foot function in 16- to 18-year-old high school students: a single-blind case-control study. https://www.ncbi.nlm.nih.gov/pubmed/21622633
  10. Factors associated with patellofemoral pain syndrome: a systematic review. BJSM 2013 https://www.ncbi.nlm.nih.gov/pubmed/22815424
  11. The Pathophysiology of Patellofemoral Pain Syndrome – Scott Dye http://prdupl02.ynet.co.il/ForumFiles_2/19447772.pdf
  12. Hartmann, H., Wirth, K., & Klusemann, M. (2013). Analysis of the Load on the Knee Joint and Vertebral Column with Changes in Squatting Depth and Weight Load. Sports Med.
  13. 2016 Patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester. Part 1: Terminology, definitions, clinical examination, natural history, patellofemoral osteoarthritis and patient-reported outcome measures” in Br J Sports Med, volume 50 on page 839.
  14. Trunk and lower extremity segment kinematics and their relationship to pain following movement instruction during a single-leg squat in females with dynamic knee valgus and patellofemoral pain. 2015 https://www.ncbi.nlm.nih.gov/pubmed/24836048
  15. The Basic Science of Articular Cartilage – Sports Health 2009 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445147/
  16. Patellofemoral joint kinetics while squatting with and without an external load. JOSPT 2002 https://www.ncbi.nlm.nih.gov/pubmed/11949662
  17. The Development and Application of an Injury Prediction Model for Noncontact, Soft-Tissue Injuries in Elite Collision Sport Athletes. (n.d.). Retrieved August 01, 2016, from https://www.researchgate.net/publication/46288877_The_Development_and_Application_of_an_Injury_Prediction_Model_for_Noncontact_Soft-Tissue_Injuries_in_Elite_Collision_Sport_Athletes
  18. Relationship Between Training Load and Injury in Professional Rugby League https://www.researchgate.net/profile/Tim_Gabbett/publication/49775412_Relationship_between_training_load_and_injury_in_professional_rugby_league_players/links/551894590cf2d70ee27b41ad.pdf
  19. Training and game loads and injury risk in elite Australian footballers. (n.d.). Retrieved from https://www.researchgate.net/profile/Brent_Rogalski/publication/234699103_Training_and_game_loads_and_injury_risk_in_elite_Australian_footballers/links/53dadd6b0cf2a19eee8b3f9f.pdf
  20. The acute:chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Retrieved from http://bjsm.bmj.com/content/50/4/231 Hulin, Gabbett, Lawson, Caputi, Sampson
  21. Prospective Predictors of Patellofemoral Pain Syndrome: A Systematic Review With Meta-analysis. Sports Health 2012
  22. Factors associated with patellofemoral pain syndrome: a systematic review. BJSM 2013 https://www.ncbi.nlm.nih.gov/pubmed/22815424
  23. Is body mass index associated with patellofemoral pain and patellofemoral osteoarthritis? A systematic review and meta-regression and analysis. BJSM 2017 https://www.ncbi.nlm.nih.gov/pubmed/27927675
  24. Is Knee Pain During Adolescence a Self-limiting Condition? Prognosis of Patellofemoral Pain and Other Types of Knee Pain. AJSM 2016 https://www.ncbi.nlm.nih.gov/pubmed/26792702
  25. The psychological features of patellofemoral pain: a systematic review. BJSM 2017 https://www.ncbi.nlm.nih.gov/pubmed/28320733
  26. The Association of Ankle Dorsiflexion Range of Motion With Hip and Knee Kinematics During the Lateral Step-down Test. JOSPT 2016
  27. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: A systematic review Journal Sci Med Sport 2017 https://www.ncbi.nlm.nih.gov/pubmed/26117159
  28. Stress and Your Body: The Great Courses by Robert Sapolsky
  29. Effectiveness of Manual Therapy on Pain and Self-Reported Function in Individuals With Patellofemoral Pain: Systematic Review and Meta-Analysis JOSPT 2018 https://www.jospt.org/doi/pdf/10.2519/jospt.2018.7243
  30. Effectiveness of hip muscle strengthening in patellofemoral pain syndrome patients: a systematic review https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518569/
  31. Exercise for treating patellofemoral pain syndrome: an abridged version of Cochrane systematic review. https://www.ncbi.nlm.nih.gov/pubmed/26158920 Cochrane 2016
  32. Differences in pressure pain threshold among men and women after foam rolling. https://www.ncbi.nlm.nih.gov/pubmed/29037655
  33. Managing Chronic Pain – John Otis: Treatments that Work
  34. A prospective study predicting the outcome of chronic low back pain and physical therapy: the role of fear-avoidance beliefs and extraspinal painhttps://www.ncbi.nlm.nih.gov/pubmed/26995499
  35. Nonspecific Low Back Pain and Return to Work https://www.aafp.org/afp/2007/1115/p1497.html#sec-7
  36. Therapeutic Neuroscience Education – Adriaan Louw

Leave a Comment: